US009059964B2

a2 United States Patent 10) Patent No.: US 9,059,964 B2
Barrett 45) Date of Patent: Jun. 16, 2015
(54) METHOD AND SYSTEM FOR (58) Field of Classification Search
COMMUNICATION BETWEEN CPC oot GOGF 9/544; GOGF 9/547
APPLICATION AND WEB-PAGE EMBEDDED USPC oo 719/311, 312
CODE See application file for complete search history.
(71) Applicant: VMware, Inc., Palo Alto, CA (US) (56) References Cited
(72) Inventor: g}gl){e R. Barrett, San Francisco, CA U.S. PATENT DOCUMENTS
. 7,171,614 B2* 1/2007 715/205
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 7,216,351 BL* 52007 719/328
8,527,752 B2 9/2013 Hardt
(*) Notice: Subject to any disclaimer, the term of this 2009/0235282 Al* 9/2009 Meijeretal. 719/320
patent is extended or adjusted under 35 2010/0058177 Al N 3/2010 Engel et al.
U.S.C. 154(b) by 0 days. 2010/0235762 Al 9/2010 Laihoetal. ..o 715/753

* cited by examiner
(21) Appl. No.: 14/451,222

(22) Filed: Aug. 4, 2014 Primary Examiner — Andy Ho
: .4,

(57) ABSTRACT

One embodiment of the present invention provides a system
that facilitates communication between an embedded code in

(65) Prior Publication Data
US 2014/0344347 Al Nov. 20, 2014

Related U.S. Application Data a web page and a stand-alone application. During operation,

(63) Continuation of application No. 13/629,466, filed on ~ the system first embeds a code within a web page that is
Sep. 27, 2012, now Pat. No. 8,799,921. displayed in a browser. Next, the embedded code receives
information indicating a communication method provided by

(51) Int.CL a stand-alone application, via a first communication channel.
GOG6F 13/00 (2006.01) The embedded code subsequently sends the contextual infor-

HO4L 29/08 (2006.01) mation associated with a user browser session by calling the

GO6F 9/54 (2006.01) communication method, via a second communication chan-

(52) US.CL nel, thereby allowing the stand-alone application to inherit

CPC HO4L 67/02 (2013.01); GO6F 9/54 (2013.01); the contextual information from the web browser.
GOG6F 9/544 (2013.01); HO4L 67/1097
(2013.01) 21 Claims, 6 Drawing Sheets

STAND-ALONE
APPLICATION 130 CALL-BACK
TOPIC A FUNCTION 106

TOPIC B
BROWSER CONTEXTUAL

INFORMATION 104 | \' 100

~
SHARED N
MEMORY
108
CALL-BACK TOPICA
FUNCTION 106 =
—]
TOPICB R OWSER CONTEXTUAL
INFORMATION 104
BROWSER
110
102
EMBEDDED, ?
CODE |
140

US 9,059,964 B2

Sheet 1 of 6

Jun. 16, 2015

U.S. Patent

I 'Ol
ok
[W
_ 33d02
] a3aa3ang
201 —
O o
¥ISMoug
0L NOILYNHOANI =
WNLXILNOD mmm@omm -
|
vvvvvvvvvvvvvm A
= 901 NOILONNA
_ VoldOL Mova-TIvo
o
AHOWAW
™« a34vHS
~
\\ ST
00} 0L NOILLYIWHOANI

TYNLX3LINOD 43ISMOud

g 01doL
901 NOILANNI vodor \
MOVE-TIVO N

01 NOILYOITddV
ANOTV-ANVLS

US 9,059,964 B2

Sheet 2 of 6

Jun. 16, 2015

U.S. Patent

01 NOILYOITddY
ANOTV-ANVLS

¢ Ol

701 NOILVINHO4NI

0ce

3000 AMS

TVNLX3ILNOD ¥3ISMONH4
|
¥0Z LNO 4MS
» ¢0C NI 4MS
- |
901 NOILONNA
AOVE-11vO

US 9,059,964 B2

Sheet 3 of 6

Jun. 16, 2015

U.S. Patent

€ 9Old
R 801
AYOWIN QFHVHS
28
_ (74N ALINNWWOD) ALINNININOD 138
NI“AMS HONOYHL 1~ |
AYOWIAW QFHVHS AYIND | 80€ _
_ gle
q | (P ALINNAINOD 139
S14VLS NOILYTIVLSNI Qm "
ﬁ | 202 NI"4MS vo/m 10O 4MS
|
3LNDIAX3 ANV T4 _ d3av01 3009
39Vd LISIA
Q3AVOINMOA IAVS [_ |
¥0g _ 218
_ 1) ALINNWNOD L3S,
;M J
~" IV
022
0€} ddv INOTV-ANVLS 3000 4MS

U.S. Patent Jun. 16, 2015 Sheet 4 of 6 US 9,059,964 B2

START

402 I p|SpLAY WEBPAGE THAT INCLUDES EMBEDDED

CODE

404 COLLECT USER INFORMATION BY EMBEDDED

CODE

RECEIVE USER COMMAND TO START APP

START LOCAL APP

SUBSCRIBE TO FIRST KNOWN TOPIC

414 RECEIVE METHOD NAME FROM APP VIA FIRST
CHANNEL

416 PUBLISH CALL TO METHOD AND PASS
| CONTEXTUAL INFORMATION UNDER SECOND
KNOW TOPIC

420
SHUT DOWN COMMUNICATION CHANNELS

FIG. 4

U.S. Patent Jun. 16, 2015 Sheet 5 of 6 US 9,059,964 B2

START

2 ________________
\: RECEIVE COMMAND TO START APP FROM
EMBEDDED CODE

50‘L SET NAME OF CALL-BACK FUNCTION USING A

RANDOM STRING

506\ SET NAME OF CALL-BACK FUNCTION AS
ARGUMENT OF A FIRST KNOWN FUNCTION

508 PUBLISH A CALL TO THE FIRST KNOWN
| FUNCTION UNDER A FIRST KNOWN TOPIC IN
SHARED MEMORY

RECEIVE UNDER A SECOND KNOWN TOPIC A
51(L CALL TO THE CALL-BACK FUNCTION WITH
USER BROWSER CONTEXTUAL INFORMATION
AS ITS ARGUMENT

512¥ EXECUTE CALL-BACK FUNCTION AND OBTAIN

USER BROWSER CONTEXTUAL INFORMATION

514
g

SHUT DOWN COMMUNICATION CHANNELS

FIG. 5

U.S. Patent Jun. 16, 2015 Sheet 6 of 6 US 9,059,964 B2

/ f BROWSER 11

/ EMBEDDED CODE 120]

L

[COMPUTER AND COMMUNICATION /) \
SYSTEN @A / [STAND-ALONE APPLICATION
PROCESSOR (-
— 130
602 L
STORAGE .
[}
MEMORY &06 '
604
D M ;
L \ APPLICATION
\ 612
\ \
\
\ APPLICATION
\ 614

FIG. 6

US 9,059,964 B2

1
METHOD AND SYSTEM FOR
COMMUNICATION BETWEEN
APPLICATION AND WEB-PAGE EMBEDDED
CODE

RELATED APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/629,466 filed Sep. 27, 2012 and entitled
“Method and System for Communication between Applica-
tion and Web-page Embedded Code,” by Blake R. Barrett, the
contents of which are hereby incorporated by reference
herein.

BACKGROUND

Over the past few years social networking has become an
important tool for auserto stay connected with peers. A social
networking site hosting and sharing data can be for general
purposes, connecting people with different interests and cov-
ering a wide range of locations. There can also be social
networking sites that connect people with specific interests.
For example, a social networking site can connect people with
keen interest on photography, connect job seekers and recruit-
ers, or connect employees within a large enterprise, and so on.

These social networking sites typically run through a
user’s web browser. Recently, there have been also stand-
alone applications for some of the popular social networking
sites. These applications can keep the user logged into the
online community and generate pop-up messages for the user
when the user closes a browser session or directs the browser
to a different website.

Often, a user may want to move from a browser session to
a stand-alone application and continue to participate in the
same online community. Migrating from a browser session to
a stand-alone application typically requires the same contex-
tual information (e.g., the uniform resource locator (URL) of
the online community and user information) to be present in
the stand-alone application. A common challenge involved in
this challenge is how to communicate this contextual infor-
mation from the browser to the stand-alone application with-
out requiring the user to enter the information manually (such
as typing or pasting the URL into the stand-alone applica-
tion). For example, consider an online forum for the employ-
ees of an enterprise. When a user authenticated to use the
forum via a web browser wishes to continue to access the
forum in a stand-alone application and not have to leave a
browser tab open; the user often must re-enter the forum’s
URL they wish to join into the stand-alone application, before
providing his security credentials.

SUMMARY

One embodiment of the present invention provides a sys-
tem that facilitates communication between an embedded
code in a web page and a stand-alone application. During
operation, the system first embeds code within a web page
that is displayed in a browser. Next, the embedded code
receives information indicating a communication method
provided by a stand-alone application, via a first communi-
cation channel. The embedded code subsequently sends the
contextual information associated with a user browser session
by calling the communication method, via a second commu-
nication channel. This way, the communication between the
embedded code and the stand-alone application allows the
stand-alone application to inherit the contextual information
from the web browser.

15

20

25

40

45

50

55

60

2

In a variation on this embodiment, the information indicat-
ing the communication method includes a random string gen-
erated by the stand-alone application.

In a variation on this embodiment, the first communication
channel is a local channel based on shared memory in a
computer where the stand-alone application and the embed-
ded code reside.

In a variation on this embodiment, while receiving infor-
mation indicating a communication method provided by the
stand-alone application, the embedded code subscribes to the
first channel.

In a variation on this embodiment, the stand-alone appli-
cation is a sender and the embedded code is a listener on the
first communication channel.

In a variation on this embodiment, the embedded code is a
sender and the stand-alone application is a listener on the
second communication channel.

In a variation on this embodiment, the contextual informa-
tion includes user subscription information or server domain
information or both.

BRIEF DESCRIPTION OF FIGURES

FIG. 1 presents a block diagram illustrating how a code
embedded in a web page and executing in a browser commu-
nicates with a stand-alone application communicate using a
shared memory, in accordance with an embodiment.

FIG. 2 illustrates how the system implements two-way
communication between a web-page embedded SWF code
and a stand-alone application over two separate local com-
munication channels, in accordance with an embodiment.

FIG. 3 illustrates an exemplary process of establishing
two-way communication between a stand-alone application
and an embedded code, in accordance with an embodiment.

FIG. 4 presents a flowchart illustrating an exemplary pro-
cess of an embedded code establishing communication witha
stand-alone application, in accordance with an embodiment.

FIG. 5 presents a flowchart illustrating an exemplary pro-
cess of a stand-alone application establishing communication
with an embedded code, in accordance with an embodiment.

FIG. 6 presents a diagram illustrating an exemplary system
for implementing components to facilitate communication
between an embedded code and a stand-alone application, in
accordance with one embodiment.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention is not limited to the embodiments shown, but is to
be accorded the widest scope consistent with the claims.

Embodiments described herein solve the problem of
securely communicating the contextual information of a web
browsing session from a web browser to a stand-alone appli-
cation by facilitating two local one-way communication
channels between an embedded code in the web page and the
stand-alone application.

During operation, a user issues a command to install and/or
start the stand-alone application. In response, the stand-alone
application starts and publishes a message via a first local
communication channel, which, for example, can be imple-

US 9,059,964 B2

3

mented in shared memory and allows a running thread to
publish messages. This published message includes a com-
mand that calls a known function provided by the embedded
code and passes as an argument the name of a uniquely
identifiable call-back function.

Subsequently, the embedded code reads from this first
channel, executes the known function, and obtains the name
of'the uniquely identifiable call-back function. The embedded
code then publishes a second message on a second channel.
This second message includes a command that calls the
uniquely identifiable call-back function and passes the con-
textual information of the web browsing session (such as the
URL ofan online community) as an argument of the call-back
function. In response, the stand-alone application reads from
the second channel, executes the command, and receives the
contextual information.

Once the contextual information is passed from the embed-
ded code to the stand-alone application, the system can shut
down the communication channels and the stand-alone appli-
cation can proceed to authenticate the user using the inherited
contextual information. This way, the user does not need to
manually enter the browser’s contextual information into the
stand-alone application.

In some embodiments, the embedded code and the stand-
alone application can both execute in a cross-platform runt-
ime environment, such as the Adobe Integrated Runtime
(Adobe AIR). Such a runtime environment can allow the
embedded code (which can be in Adobe SWF format) to
communicate with the stand-alone application (which can
also be in SWF format) via shared memory.

Although the present disclosure uses the examples of SWF
codes, embodiments described herein are not limited to SWF
codes and are applicable to any two applications running on
the same computing device, including but not limited to,
desktop computers, notebook computers, netbook comput-
ers, tablets, etc.

The term “browser contextual information” is used in a
generic sense and refers to any information pertaining to a
user’s web browser session. Such contextual information can
include but is not limited to: URL, user name, session state,
authentication status, etc.

As previously discussed, embodiments described herein
provide a method of communication between an embedded
code in a web page and a stand-alone application. When a
browser displays a web page, the embedded code starts
executing. The embedded code communicates with the stand-
alone application using two communication channels. On the
first communication channel, which can be implemented as a
first topic in a shared-memory communication mechanism
provided by Adobe AIR, the stand-alone application pub-
lishes, and the embedded code “listens.” On this first channel,
the embedded code receives information related to method
call-back function from the stand-alone application. On a
second channel, which can be implemented as a second topic
in the shared-memory communication mechanism, the
embedded code publishes and the stand-alone application
“listens.” On this second channel, the embedded code calls
the call-back function and passes the user’s browser contex-
tual information as an argument to the stand-alone applica-
tion.

In some embodiments, to improve security of the commu-
nication, the stand-alone application can dynamically gener-
ate the name of'the call-back function by, for example, includ-
ing a random string therein.

FIG. 1 presents a block diagram illustrating how a code
embedded in a web page and executing in a browser commu-
nicates with a stand-alone application communicate using a

10

15

20

25

30

35

40

45

50

55

60

65

4

shared memory, in accordance with an embodiment. A com-
puting device 100 hosts a web browser 110 and a stand-alone
application 130. Browser 110 displays a web page that runs a
code 120 embedded in the web page. During operation, com-
puting device 100 receives a command 102 (which, in one
embodiment, can be issued to embedded code 120) to start a
stand-alone application 130 from a user 140. Shared memory
108 facilitates two communication channels, one under
“TOPIC A” and the other under “TOPIC B.” Under TOPIC A,
stand-alone application 130 publishes and embedded code
120 listens. Under TOPIC B, embedded code 120 publishes,
and stand-alone application 130 listens.

Initially, stand-alone application 130 passes information
regarding a call-back function 106 to embedded code 120. In
one embodiment, stand-alone application 130 passes the
name of call-back function 106 as an argument of a known
function, and publishes a call to this function under
TOPIC_A. Embedded code 120 then receives the call,
executes the called function, and obtains the name of call back
function 106. In response, embedded code 120 publishes a
call to call-back function 106 under TOPIC_B and passes
browser contextual information 104 (such as a URL, user
information, and session state information, etc.) as an argu-
ment of call-back function 106. As a result, stand-alone appli-
cation receives this call to call-back function 106, executes
call-back function 106, and obtains browser contextual infor-
mation 104.

FIG. 2 illustrates how the system implements two-way
communication between a web-page embedded SWF code
and a stand-alone application over two separate local com-
munication channels, in accordance with an embodiment. In
this example, embedded code 120 is a SWF code 220. SWF
code 220 listens under topic “SWF_IN” in the shared
memory, which effectively serves as an input channel 202.
SWF code 220 also publishes under topic “SWF_OUT” in the
shared memory, which effectively serves as an output channel
204. Stand-alone application 130 “talks” to SWF code 220 on
input channel 202 and passes the name of call-back function
106. In response, SWF code 220 communicates back to
stand-alone application 130 browser contextual information
104 by calling call-back function 106 over output channel
204.

FIG. 3 illustrates an exemplary process of establishing
two-way communication between a stand-alone application
and an embedded code, in accordance with an embodiment.
During operation, SWF code 220 is loaded when a user visits
the web page that embeds the code (operation 312). Stand-
alone application 130 on the other hand is installed (operation
306) after the user downloads a file and executes the down-
loaded file (operation 304). Stand-alone application 130 then
queries SWF code 220 under topic SWF_IN via shared
memory 108. In one embodiment, stand-alone application
130 publishes a call to a known function, GET_COMMU-
NITY () which has as its argument the name of call-back
function 106, “SET_COMMUNITY ()’ (operation 318).

Subsequently, SWF code 220 receives this argument and
obtains the name of call-back function 106. In response, SWF
code publishes a call to SET_COMMUNITY () and passes
the browser contextual information (such as the text of an
URL corresponding to an online community) as its argument,
under topic SWF_OUT (operation 322). In general, the con-
textual information can include the user’s browser session
information and a web server domain information.

FIG. 4 presents a flowchart illustrating an exemplary pro-
cess of an embedded code establishing communication witha
stand-alone application, in accordance with an embodiment.
During operation, a user browser displays a web page that

US 9,059,964 B2

5

includes an embedded code (operation 402). The embedded
code executes and collects information about the user’s cur-
rent browsing session (operation 404). Next, the system
receives a user command to start a stand-alone application
(operation 406). In response to this command, the stand-alone
application starts (operation 408). Note that the user com-
mand to start the stand-alone application can be received by
the embedded code, or received by the operating system via a
regular graphical user interface.

Subsequently, the embedded code subscribes to a first
known topic in a shared memory (operation 412). The embed-
ded code then receives information regarding a communica-
tion method (e.g., the name of a call-back function) from the
stand-alone application published under this first topic (op-
eration 414). In response, the embedded code calls the
method and passes the user browser contextual information
by publishing the call under a second known topic in the
shared memory (operation 416). The system then shuts down
the communication channels (operation 420).

FIG. 5 presents a flowchart illustrating an exemplary pro-
cess of a stand-alone application establishing communication
with an embedded code, in accordance with an embodiment.
During operation, the system receives a command from an
embedded code to start execution (operation 502) (optionally,
the command is received by the embedded code). After the
stand-alone application starts, it sets the name of a call-back
function, using a random string (operation 504). Note that this
call-back function can be used by the embedded code to
communicate information back to the stand-alone applica-
tion. Next, the stand-alone application sets the name of the
call-back function as the argument of a first known function
(operation 506). This first known function is provided by
embedded code and is assumed to be known by the stand-
alone application.

Subsequently, the stand-alone application publishes a call
to the first known function under a first known topic in a
shared memory (operation 508). Because the argument of this
function call is the name of the call-back function, the embed-
ded code can obtain the name of the call-back function by
executing this call, and publish under a second known topic a
call to the call-back function with the user’s browser contex-
tual information as an argument to the call-back function.
Correspondingly, the stand-alone application receives under
the second known topic the call to the call-back function with
user browser contextual information as its argument (opera-
tion 510). In response, the stand-alone application then
executes the call-back function and obtains the user browser
contextual information (operation 512). The system then
shuts down the two-way communication channels (operation
514).

FIG. 6 presents a diagram illustrating an exemplary system
for implementing components to facilitate communication
between an embedded code and a stand-alone application, in
accordance with one embodiment. In this example, a com-
puter and communication system 600 includes a processor
602, a memory 604, and a storage device 606. Storage device
606 stores instructions which implement web browser 110.
Web browser 110 in turn displays a web page that includes
embedded code 120. Storage device 606 also stores instruc-
tions for stand-alone application 130, as well as other appli-
cations, such as applications 130 and 612. Instructions for
embedded code 120 and stand-alone application 130 are
loaded from storage device 606 into memory 604 and then
executed by processor 602. While executing the program,
processor 602 performs the aforementioned operations.

Note that the above-mentioned components can be imple-
mented in hardware as well as in software. In some embodi-

10

15

20

25

30

35

40

45

50

55

60

65

6

ments, one or more of these components can be embodied in
computer-executable instructions stored in a memory which
is coupled to one or more processors in system 600. When
executed, these instructions cause the processor(s) to perform
the aforementioned functions.

The data structures and code described in this detailed
description can be stored on a computer-readable storage
medium, which may be any device or medium that can store
code and/or data for use by a computer system. The computer-
readable storage medium includes, but is not limited to, vola-
tile memory, non-volatile memory, magnetic and optical stor-
age devices such as disk drives, magnetic tape, CDs (compact
discs), DVDs (digital versatile discs or digital video discs), or
other media capable of storing computer-readable media now
known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-read-
able storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

The foregoing descriptions of embodiments of the present
invention have been presented only for purposes of illustra-
tion and description. They are not intended to be exhaustive or
to limit this disclosure. Accordingly, many modifications and
variations will be apparent to practitioners skilled in the art.
The scope of the present invention is defined by the appended
claims.

What is claimed is:

1. A computer-executed method, comprising:

communicating information indicating a communication

method to a code being executed in a web browser ses-
sion; and

receiving, from the code being executed in the web browser

session, contextual information associated with the web
browser session via the communication method, thereby
facilitating an application that is distinct from the web
browser session to execute using contextual information
inherited from the web browser session.

2. The communication method of claim 1, wherein com-
municating information indicating the communication
method to the code being executed in the web browser session
comprises passing a name of the communication method as
an argument for a known function associated with the code
and publishing a call to the known function to a memory
region that can be read by the code.

3. The method of claim 1, wherein receiving contextual
information from the code being executed in the web browser
session comprises receiving a call to the communication
method;

wherein the call to the communication method is written by

the code to a shared memory region; and

wherein the contextual information is passed as an argu-

ment for the communication method.

4. The method of claim 1, further comprising generating a
name for the communication method using a random string.

5. The method of claim 1, wherein the application is down-
loaded in the same web browser session.

6. The method of claim 1, further comprising allowing the
web browser session to initiate installation of the application.

7. The method of claim 1, wherein the contextual informa-
tion comprises user subscription information, server domain
information, or both.

US 9,059,964 B2

7

8. A computer readable non-transitory storage medium
storing instructions which when executed by computer cause
the computer to perform a method, the method comprising:

communicating information indicating a communication

method to a code being executed in a web browser ses-
sion; and

receiving, from the code being executed in the web browser

session, contextual information associated with the web
browser session via the communication method, thereby
facilitating an application that is distinct from the web
browser session to execute using contextual information
inherited from the web browser session.

9. The computer readable non-transitory storage medium
of claim 8, communicating information indicating the com-
munication method to the code being executed in the web
browser session comprises passing a name of the communi-
cation method as an argument for a known function associ-
ated with the code and publishing a call to the known function
to a memory region that can be read by the code.

10. The computer-readable non-transitory storage medium
of’claim 8, wherein receiving contextual information from the
code being executed in the web browser session comprises
receiving a call to the communication method;

wherein the call to the communication method is written by

the code to a shared memory region; and

wherein the contextual information is passed as an argu-

ment for the communication method.

11. The computer-readable non-transitory storage medium
of claim 8, wherein the method further comprises generating
aname for the communication method using a random string.

12. The computer-readable non-transitory storage medium
of'claim 8, wherein the application is downloaded in the same
web browser session.

13. The computer-readable non-transitory storage medium
of claim 8, wherein method further comprises allowing the
web browser session to initiate installation of the application.

14. The computer-readable non-transitory storage medium
of claim 8, wherein the contextual information comprises
user subscription information, server domain information, or
both.

10

20

25

30

35

40

8

15. A computing system, comprising:

a processor; and

a memory coupled to the processor, wherein the memory

stores instructions which when executed by the proces-

sor cause the processor to perform a method, the method

comprising:

communicating information indicating a communica-
tion method to a code being executed in a web browser
session; and

receiving, from the code being executed in the web browser

session, contextual information associated with the web
browser session via the communication method, thereby
facilitating an application that is distinct from the web
browser session to execute using contextual information
inherited from the web browser session.

16. The computing system of claim 15, wherein commu-
nicating information indicating the communication method
to the code being executed in the web browser session com-
prises passing a name of the communication method as an
argument for a known function associated with the code and
publishing a call to the known function to a memory region
that can be read by the code.

17. The computing system of claim 15, wherein receiving
contextual information from the code being executed in the
web browser session comprises receiving a call to the com-
munication method;

wherein the call to the communication method is written by

the code to a shared memory region; and

wherein the contextual information is passed as an argu-

ment for the communication method.

18. The computing system of claim 15, wherein the method
further comprises generating a name for the communication
method using a random string.

19. The computing system of claim 15, wherein the appli-
cation is downloaded in the same web browser session.

20. The computing system of claim 15, wherein the method
further comprises allowing the web browser session to initiate
installation of the application.

21. The computing system of claim 15, wherein the con-
textual information comprises user subscription information,
server domain information, or both.

#* #* #* #* #*

